• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Lehrstuhl WWI: Allgemeine Werkstoffeigenschaften
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften
  • en
  • de
  • Department WW
  • Univis
  • Mein Campus
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Werkstoffwissenschaften

Lehrstuhl WWI: Allgemeine Werkstoffeigenschaften

Menu Menu schließen
  • Lehrstuhl
    • Team
    • Kontakt & Anfahrt
    • Geschichte
    • Stellenangebote
    Portal Lehrstuhl
  • Forschung
    • Atomsondentomographie & 3D-Nanoanalytik
    • Hochtemperaturwerkstoffe
    • Leichtmetalle & Mechanische Prüfung
    • Modellierung & Simulation
    • Nanomechanik
    • Nanostrukturierte Werkstoffe
    • Publikationen
    • Aktuelle Kooperationen
    Portal Forschung
  • Lehre
    • Lehrveranstaltungen
    • Hausseminare
    • Retreat Symposium – Sattelbogen
    Portal Lehre
  • Ausstattung
    • Wärmebehandlung
    • Metallographie und Probenfertigung
    • Mikroskopie und Analyse
    • Mechanische Prüfung
    • Tribologische Eigenschaften
    • Erzeugung von nanostrukturierten Materialien
    • Simulation
    • Sonstige Ausstattung
    Portal Ausstattung
  • Downloads
    • Newsletter
    • Tools
    Portal Downloads
  1. Startseite
  2. Ausstattung
  3. Erzeugung von nanostrukturierten Materialien

Erzeugung von nanostrukturierten Materialien

Bereichsnavigation: Ausstattung
  • Wärmebehandlung
  • Metallographie und Probenfertigung
  • Mikroskopie und Analyse
    • Atomsonde – Cameca Leap 4000X HR
    • Atomsonde – Oxcart
    • Dynamische Differenzkalorimetrie – Netsch 204 F1 Phoenix®
    • Feldionenmikroskop (FIM)
    • Großkammer-Rasterelektronenmikroskop
    • Rasterelektronenmikroskop inkl. FIB – FEI Helios NanoLab 600i DualBeam
    • Rasterelektronenmikroskop inkl. FIB – Zeiss Crossbeam 1540
    • Rasterkraftmikroskop – Bruker Dimension 3100
    • Röntgendiffraktometer – Bruker D5000
    • Röntgendiffraktometer – Bruker D8
    • Transmissionselektronenmikroskop – Philips CM200
  • Mechanische Prüfung
    • Hochfrequenzpulsator – Zwick Roell
    • Hysitron Triboscope
    • In situ Nanoindenter FT-NMT04
    • In-situ Nanoindenter – Femtotools FT-NMT03
    • Mechanische Prüfung dünner Schichten – Bulge Test
    • Nanoindenter – Agilent XP
    • Nanoindenter – KLA-Tencor G200
    • Pneumatisch-mechanische Kriechapparaturen
    • Servohydraulische Ermüdungsapparaturen – MTS 880/810
    • Thermomechanischer Analysator – Netzsch TMA Hyperion 402
    • Ultraschallermüdungsapparatur – Ultrafast-WKK
    • Universalprüfmaschinen – Instron
  • Tribologische Eigenschaften
  • Erzeugung von nanostrukturierten Materialien
    • Akkumulativer Walzprozess
  • Simulation
    • Hochleistungsarbeitsplätze für Visualisierungen
    • HPC – High Performance Computing Cluster
  • Sonstige Ausstattung
    • CNC Fräsmaschine – Pocket NC
    • Filament 3D Drucker
    • PVD-Anlage – EVU-MSE-1
    • Stereolithografie 3D Drucker – Formlabs Form 3

Erzeugung von nanostrukturierten Materialien

Am Lehrstuhl WW I wird der kumulative Walzprozess (ARB, engl.: accumulative roll bonding) genutzt, um nanostrukturierte Werkstoffe zu erzeugen. Das ARB-Verfahren eignet sich zur Herstellung von reinen nanostrukturierten Monomaterialien, aber auch von maßgeschneiderten (ultrafeinkörnigen) Blechen mit abgestuften mechanischen Eigenschaften durch Einbringen von Partikeln mittels Sprühen. Eine weitere Möglichkeit ist die Herstellung von fein laminierten metallischen Verbundwerkstoffen (LMCs, engl.: laminated metal composites). Diese LMCs zeichnen sich durch eine schichtweise Kombination verschiedener Werkstoffe aus. So werden die Eigenschaften der unterschiedlichen Werkstoffe kombiniert, was zu vielversprechenden mechanischen und funktionellen Eigenschaften dieser Laminate führt.

  • Akkumulativer Walzprozess
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Martensstraße 5
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Nach oben